

OPTIMA

SCAFFOLDINGS MADE IN PLETTENBERG

MJ-Gerüst GmbH, based in Plettenberg in the German region of Sauerland, is part of a strong group of companies, which can look back on more than 50 years of company history. The core competence of the family company lies in the production and worldwide distribution of high-quality steel and aluminum scaffolding systems, which offer almost limitless possibilities in the field of modern system scaffolding construction.

With a unique range of products and a wide range of universal accessories, we offer our customers the option of completing existing scaffolding material in a system-compatible complement. A highly valued advantage by our customers that has given our scaffolding international recognition and prominence.

Development, production and sales. These are the cornerstones of our range of services, which are supplemented by numerous additional services. Especially our support in the planning and implementation of difficult projects is claimed. A service in which our technical know-how and experience can often contribute to considerable time and cost savings.

Only through qualified work can a safe quality product be created. Our proven quality management reflects our knowledge and experience and makes the quality of our products measurable. In order to quarantee our high quality standards, our production processes are constantly accompanied by external examination offices and engineers.

OUR COMPANY - YOUR BENEFITS

- Production in Germany at the location Plettenberg
- System compatible, high quality and norm compliant scaffold systems
- Certifications according to DIN EN 9001, 14001 and 50001
- Highest product quality through dynamic quality management
- Short-term availability of material due to high storage capacities and short decision-making processes
- Use of the modern production technology and permanent optimization of technological production running
- Project support already in the planning phase

PARTNER AND CERTIFICATES

OPTIMA THE SYSTEM

THE ORIGINAL MJ OPTIMA PRINCIPLE

The MJ OPTIMA scaffolding system is designed as a facade scaffolding system. The advantages from the tried and tested frame system are taken up and combined with the advantages of a modular designed scaffolding system. In addition, the requirements of a leading railing are met with system-integrated components. Meaningful and well thought out System-free accessories complete the MJ OPTIMA principle.

By investing in the MJ OPTIMA system, you are OPTIMAlly aligning your scaffold company with the future requirements of the construction industry and occupational health and safety legislation.

MJ OPTIMA

The MJ OPTIMA metric system uses new types of vertical standards and deck ledgers. Tried and tested scaffold decks, diagonals, accessories and many side protection parts can still be used. The proven and internalized assembly activities are not significantly influenced.

The use of the known perforated disc as a modular scaffolding node also makes it possible to use round tube decks and other modular scaffold components. The connection with the modular scaffold system allows previously unknown degrees of freedom in the execution of unusual scaffolding.

By installing decking ledgers, optionally with two or three piles in width, the use and provision of vertical frames of different widths is no longer necessary. Well thought-out details, such as the scaffolding corner with only three scaffolding standards, complete the superior efficiency of the system.

Transport, storage and movement of the components on the construction site are considerably simplified. Through the mechanically transport in palletized units with forklifts or by crane, in most applications only the so-called "last meter" remains for manual handling and not much more.

The lower component weights in connection with the higher safety against falling lead to a far reduced body stress strain and thus to a higher hourly output on the construction site.

The integrated leading railing frees you from the obligation to use personal protective equipment (PPE) in most situations.

The approval of the scaffold system by the German Institute for Structural Engineering with the approval number Z-8.22-986 enables a very wide field of application without further individual evidence: the standard design as well as diverse, standardized scaffold configurations with a static verification through the manufacturer and associated planning engineers are available and often replace evidence in individual cases.

In applications with special requirements that go far beyond the norm, the stability can be checked in individual cases with a static proof.

The leading railing with system-integrated components can be implemented with the existing vertical standards. The MJ-Bärchen railings (protected by proprietary rights) enable a further increase in efficiency and occupational safety.

EFFICIENT

due to optimized ease of assembly

PROFITABLE

through long life and excellent value retention

FLEXIBLE

through countless field lengths/widths

VERSATILE

through extensive range of accessories

TRBS-COMPLIANT RAILING ASSEMBLY

After completing all the assembly work for a scafoold level, the scaffold builder moves up to the next scaffold level. There is already a leading one there principal guardrail 1.00 m above the scaffold deck. The side protection of the scaffold decks is completed with a knee rail and toe board. The leading guardrail for the next scaffold level is installed as shown in Figures 1-4 below:

- A railing post 2.00 m is is going to get up on one tube connector attached.
- With the top Load classivel pin at +3.00 m, a back guard rail coupled.

- Another railing is with the standing up coupled railing post.
- Another handrail 2.00 m is becomes is connected to the free railing end coupled and clipped on.
- Field by field, all leading guard rails are mounted in advance.

- The lower, free end of the railing is attached to the upper tilting pin coupled with a second handrail 2.00 m.
- The hand rail is connected becomes to the coupled railing coupled attached to the next upright tube connector.

 The scaffold decks are laid around the work complete this scaffold level.

When climbing to the next scaffold level, there is already protection against falling.

The outside of the scaffold is continuously secured with a leading guard rail 1.00 m above the scaffold decks and with double guard rails on the front sides of the scaffold.

OPTIMA **CONTENTS**

Gen. approved by building inspection. For details on type and scope, please refer to the approval model: Z-8:22-986.

This price list includes the standard components for the MJ OPTIMA scaffold system. All components for creating the standard version of the approval as well as some additional components are included in this price list. The MJ OPTIMA scaffold system can be usefully completed with components from the MJ UNI 70/100 facade scaffold system, the MJ COMBI metric modular scaffold system and non-system scaffold accessories. The price lists for these additional systems contain a large number of components for special problem solutions. If in doubt or if you have any further questions, please contact our emplyees. We are happy to help!

The system	04
Base jacks	06
Vertical standards	07
Vertical support elements for special height compensation	10
Horizontal diagonal bracing	
Diagonal bracing	12
Decks	14
Climb up	16
Gap covers	21
Side protection components	22
Toe boards	24
Brackets	25
Scaffold tubes and couplers	27
Lattice beams	31
Anchorings	33
Protection wall / Barrier	34
The safety enclosure OPTI-BOARD	35
Storage and transport	37
Securing during assembly of the scaffold	38
Notes	42
Order form	43

All prices exclude VAT applicable at the time of shipment. All dimensions and weights are non-binding approximate values. Technical data is subject to change without prior notice. Prices are charged as applicable on the day of shipment. Sale is subject exclusively to our sales terms and delivery conditions. An excerpt: place of business and jurisdiction is Plettenberg. Extended retention of title until full payment of all outstanding claims. Our prices are ex works.

f in www.geruestlager.de

BASE JACK

- Steel, hot dip galvanized
- With tube spindle
- Base plate 150 x 150 mm
- For adjusting level with differences in height of the underground
- Knurled nut with collar for centring the shaft on the spindle
- Lock to prevent unscrewing of the knurled nut and to ensure the necessary bridging length
- Can be used as a head spindle

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,30	2,40	375	000318	17,80
0,50	3,10	300	000319	21,30
0,60	3,40	300	000320	22,00
0,78	3,90	250	000321	29,80
1,00	4,70	200	000322	35,70

AFIVEL BASE JACK

- Steel, hot dip galvanized
- With tube spindle
- AFiveling base plate 150 x 150 mm
- For adjusting level with differences in height of the underground
- Knurled nut with collar for centring the shaft on the spindle
- Lock to prevent unscrewing of the knurled nut and to ensure the necessary bridging length
- Can be used as a head spindle
- Additional longitudinal scaffold bracing required at in the base
- Permissible load: 25.4 kN

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,50	3,10	250	000323	46,30
N 8N	4.30	200	013797	54 50

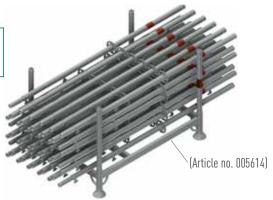
UNDERLAY WOODS

- As a load distributing support
- Sawn
- Dimension +/- 10 mm

Length (m)	Width (m)	Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,00	0,24	0,04	1,50	80	009203	10,20
1,50	0.24	0.04	2.25	80	010360	12.30

OPTIMA VERTICAL STANDARDS

RAILING VERTICAL STANDARD 2,00 M


- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- For tensile connection at the stand connection punched
- With Load swivel pins
- With perforated disc to accommodate the deck ledger as well as for the versatile connection of COMBI vertical diagonals, ledger and consoles
- Optionally with or **without** diagonal swivel pin

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,00	7,00	70	010797	62,90
2,00	7,20	70	011774	70,90

STARTING VERTICAL STANDARD

- For tensile connection at the stand connection punched
- Base vertical standard 1.16 m for direct use on the base jack
- With Load swivel pin
- With perforated discs to accommodate the deck ledger as well as for the versatile connection of COMBI vertical diagonals, ledger and consoles

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,16	5,70	50	010799	60,50

Net price, not discountable

STARTING VERTICAL STANDARD 3,16 M

SCAFFOLDING BASE UP TO 3.00 M HIGH

- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- For tensile connection at the stand connection punched
- Base vertical standard 1.16 m for direct use on the base jack
- With Load swivel pin
- With perforated discs to accommodate the deck ledger as well as for the versatile connection of COMBI vertical diagonals, ledger and consoles

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
3,16	11,30	70	012452	114,40
3 16	11 40	70	008094	122 AN

OPTIMA

STARTING VERTICAL STANDARD

FOR HEIGHT COMPENSATION

- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- Perforated for tension-proof connection at the stand joint
- For use in the lowest scaffold level without an starting collar
- With Load swivel pin
- With a perforated disc each at the base and at the level of the scaffold deck level to accommodate the deck ledgers as well as for the versatile connection of COMBI vertical diagonals, transoms, brackets

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,66	6,70	70	013534	78,90
2,66	9,70	70	013535	107,90

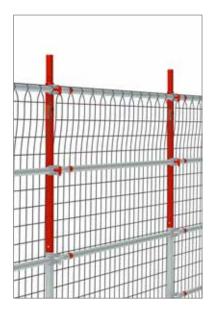
END VERTICAL STANDARD 1.00 M

FINISH AT FLOORING HEIGHT

- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- Perforated for tension-proof connection at the stand joint
- With a perforated disc to accommodate the deck ledgers and for the versatile connection of COMBI vertical diagonals, ledgers, consoles
- End post to the upper scaffold closure on the inside of the scaffold

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,00	3,30	50	010798	39,00

OPTIMA VERTICAL STANDARDS


BASE VERTICAL STANDARD 1.00 M

SCAFFOLDING BASE / GUARDRAIL POST ON BRACKET / ROOF SUPPORT

- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- Perforated for tension-proof connection at the stand joint
- With two swivel pins
- With tube connector

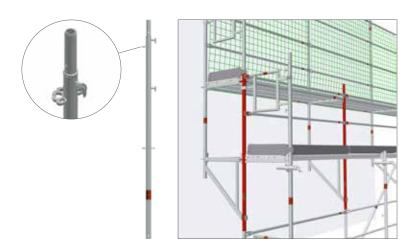
Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,00	4,20	50	010796	55,50

END VERTICAL STANDARD 1.00 M WITH TUBE CONNECTOR

CLOSURE AT FLOORING HEIGHT

- Steel tube S 460, Ø 48.3 x 2.7 mm, hot dip galvanized
- Perforated for tension-proof connection at the stand joint
- With tube connector
- With a perforated disc to accommodate the deck ledgers and for the versatile connection of COMBI vertical diagonals, ledgers, consoles
- End post to the upper scaffold closure on the inside of the scaffold

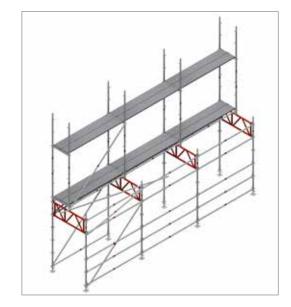
Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,00	4,00	50	008421	55,50



RAILING VERTICAL STANDARD 2.00 M WITH HALF PERFORATED DISC

HEIGHT OFFSET BY 1.00 M

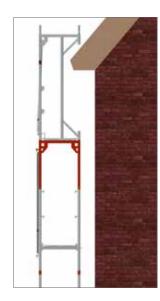
- Same design as railing post 2.00 m, with an additional half perforated disc to accommodate the decking ledgers, ledgers and brackets
- For easy assembly of a bracket roof safety scaffold 1.00 m above the scaffold deck level


Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,00	7,20	70	011841	107,00

WALK-THROUGH FRAME TRUSS BEAM 1,50 M

- For the erection of pedestrian walkways and walkways for pedestrians
- Through-frame trusses for use with modular scaffold standards
- Connection with four wedge heads, stable and rigid construction
- Ideal for height compensation
- For lateral, central or any arrangement of the upright scaffolds
- Easy assembly, compact packing dimensions
- The COMBI walk-through frame fits all facade scaffolding and modular scaffolding width dimension

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,50	20,70	25	014243	195,00



OPTIMA VERTICAL STANDARDS

ADAPTER FRAME

- Steel tube Ø 48.3 mm hot dip galvanized
- Vertical frame for transition from OPTIMA to frame scaffold
- Like vertical frame steel 70 x 100 mm, open at the bottom

Model	Weight (kg)	PU (pcs.)	Article no.	Price (€)	
UC 70	9,80	25	013406	92,00	
UC 100	12,40	25	013407	96,00	_(

SECURITY PIN

 For securing the scuffold joints against unintetional lift off, for example, when moving scaffold units with a crane or in special wind conditions

Diameter (cm)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,90	0,15	100	000508	1,40
1,10	0,15	100	006241	1,50

SUPPLEMENTS FOR SPECIAL CONSTRUCTIONS YOU WILL FIND IN OUR PRICE LIST 'COMBI'

STARTING COLLAR

- With perforated disc
- Forms the scaffold base together with base jacks
- Vertical standard is placed in the starting collar for further assembly

Length (m)	Weight (kg)	Article no.	Price (€)
0,23	1,40	004833	15,30
0.43	2.50	004525	39.40

VERTICAL STANDARD WITH COMPRESSED TUBE CONNECTOR

- Steel tube Ø 48.3 x 3.2 mm, hot dip galvanized
- Drilled for a tensile connection in the upper and lower part
- Perforated disks at a distance of 0.50 m for up to eight connections each.
 Supports with compressed tube connectors can also be used in suspended scaffold or when moving with a crane

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,50	3,20	80	000696	25,70
1,00	5,20	40	000706	33,10
1,50	7,70	40	000719	47,10
2,00	9,80	40	000727	53,90
2,50	12,10	40	000764	73,60
3,00	14,40	40	000738	80,00
3,50	17,50	40	002892	95,80
4.00	18.50	40	000745	102,50

STARTING VERTICAL STANDARD

- Steel tube Ø 48.3 x 3.2 mm, hot dip galvanized
- With additional lower perforated disc
- $\,-\,$ As an alternative to use in the lowest scaffold level without starting collar

Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,66	4,20	40	005751	37,00
1,16	6,50	40	005752	50,70
2,16	11,00	40	004712	74,60
3,16	15,40	40	005753	104,80

LEDGER

- Steel, hot dip galvanized
- With wedge head connections for attachment to the perforated discs
- For use as a support ledger for holding decks with tube support, as bracing element and as guard rail
- In deck levels bracing ledgers can be omitted if system decks and these are secured against taking off

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,39	2,00	100	006232	31,40
0,42	2,00	100	005754	31,40
0,45	2,20	100	008250	31,40
0,50	2,20	100	004834	29,00
0,73	3,50	50/100	000699	25,40
1,00	4,00	50/100	000809	30,90
1,04	3,90	50/100	005755	30,20
1,09	4,50	50/100	000709	30,30
1,29	5,30	50/100	000714	37,10
1,40	5,80	50/100	000715	37,10
1,54	6,06	50/100	005756	37,10
1,57	6,50	50/100	000722	37,10
2,07	7,80	50/100	000730	43,40
2,57	9,70	50/100	000734	49,50
3,07	11,00	50/100	000741	55,80
4,14	14,90	100	004860	81,40

DECK LEDGER U-SUPPORT

- Steel, hot dip galvanized
- With wedge head connectors
- For use with standard UNI-CONNECT decks

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,42	2,20	200	004284	29,90
0,73	3,10	50/100	000821	29,20
1,09	4,50	50/100	000822	42,80

DECK FASTENING U-SUPPORT

- With two board pin
- With two hooks
- For securing in the U-deck ledger

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,42	0,70	-	005758	15,50
0,73	1,50	200	011135	22,90
1,09	2,20	200	011290	25,30

VERTICAL DIAGONAL BRACE

- $-\;$ Steel tube Ø 48.3 x 2.3 mm, hot dip galvanized
- With swiveling wedge heads
- For bracing the vertical scaffold structure

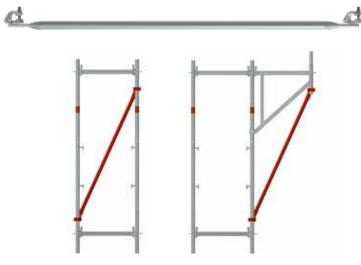
Field height (m)	Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,00	0,50	4,70	50	004946	50,10
1,00	0,73	4,20	50	006753	43,30
1,00	1,00	5,40	50	004943	49,30
1,00	1,04	6,25	50	005544	45,90
1,00	1,09	6,30	50	000810	45,90
1,00	1,29	6,40	50	005761	49,00
1,00	1,40	6,90	50	000811	51,70
1,00	1,54	7,00	50	005762	52,70
1,00	1,57	7,10	50	000812	54,30
1,00	2,07	8,40	50	000813	56,70
1,00	2,57	9,80	50	000814	60,50
1,00	3.07	11,20	50	000815	65,30

Field height (m)	Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,00	0,50	7,00	50	004791	57,80
2,00	0,73	7,90	50	000702	50,50
2,00	1,00	7,60	50	004717	50,90
2,00	1,04	8,20	50	006430	51,70
2,00	1,09	8,30	50	000711	51,50
2,00	1,29	8,50	50	006689	54,60
2,00	1,40	8,70	50	000716	56,80
2,00	1,57	8,80	50	000725	53,00
2,00	2,07	9,60	50	000733	55,30
2,00	2,57	10,40	50	000737	59,10
2,00	3,07	11,20	50	000744	62,90

OPTIMA DIAGONAL BRACING

DIAGONAL

- Steel tube Ø 48.3 x 2.3 mm, hot dip galvanized
- The assembly is carried out on the outside of the scaffold via the upper swivel pin on the OPTIMA railing post (Art.-no. 011774)
- The arrangement of the diagonals guarantees that the scaffolding is vertical, level-by-level alignment is not required


Field (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,57	7,40	50	012960	30,30
2,07	8,30	50	012961	33,20
2,57	9,40	50	012962	35,30
3,07	10,50	50	012963	39,00
4,14	14,20	50	012964	49,90

CROSS DIAGONAL

.

- Steel, hot dip galvanized
- With two half couplers
- For stiffening scaffold bays perpendicular to the facade and to support brackets

Model	Length (m)	Weight (kg)	AF	Article no.	Price (€)
2-board	1,77	5,30	19	000588	53,10
3-board	1,95	5,80	19	000587	55,90

STEEL DECK 0.19 M - UC

ID

- Steel, hot dip galvanized
- Extremely robust, for the toughest operations
- Levelling deck for closing gaps in staging scaffolding and brackets
- Non-slip surface through pronounced hole profiling
- Good stackability due to the guide grooves at the edges

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
0,73	0,19	4,20	6	100/120	008780	47,70
1,09	0,19	6,40	6	100/120	008781	56,70
1,57	0,19	8,50	6	100/120	008782	58,30
2,07	0,19	10,60	6	100/120	008783	67,90
2,57	0,19	12,70	5	100/120	008784	79,40
3,07	0,19	15,90	4	100/120	008785	92,30

STEEL DECK OPTI-LINE 0.32 M - UC

- Steel, hot dip galvanized
- Extremely robust, for the toughest operations
- Non-slip surface through pronounced hole profiling
- Reducing the wall thickness and optimized hole profiling leads to weight savings
- Good stackability due to the guide grooves at the edges
- Complies with the requirements of DIN EN 12811
- Can be used in guard and roofguard scaffolds as per DIN 4420
- Point welded

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)	
0,73	0,32	5,60	6	60/80	008770	66,60	
1,09	0,32	7,70	6	60/80	008771	67,80	
1,40	0,32	9,30	6	60/80	011731	69,00	
1,57	0,32	11,30	6	60/80	008772	69,70	
2,07	0,32	14,40	6	60/80	008773	78,20	
2,57	0,32	17,60	5	60/80	008774	90,30	
3,07	0,32	20,70	4	60/80	008775	102,60	
4,14	0,32	31,00	3	60/80	008766	200,50	

ALUMINUM DECK WITH STEEL CAPS 0,19 M

- Non-slip surface and easy to stack
- Optimized ratio of weight and carrying through computerassisted profile optimization
- Steel caps with optimized hanging claws, therefore robust and durable

Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,73	0,19	3,04	18	013791	52,30
1,09	0,19	4,10	18	013792	54,30
1,40	0,19	5,00	18	013793	70,10
1,57	0,19	5,54	18	013794	90,70
2,07	0,19	7,00	18	013795	109,70
2,57	0,19	8,50	18	013796	127,70
3,07	0,19	10,00	18	013797	151,80

OPTIMA DECKS

ALUMINUM DECK WITH STEEL CAPS 0.32 M

ID

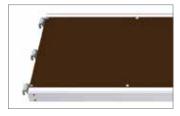
- Non-slip surface and easy to stack
- Optimized ratio of weight and carrying through computerassisted profile optimization
- Steel caps therefore robust and durable
- Patented beam reinforcements in the walking area ensure minimal deflection and best possible slip resistance

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
0,73	0,32	3,80	6	18	012323	115,90
1,09	0,32	5,10	6	18	012324	121,80
1,40	0,32	6,30	6	18	012325	124,70
1,57	0,32	6,90	6	18	012326	128,10
2,07	0,32	8,80	6	18	012327	151,10
2,57	0,32	10,70	5	18	012328	173,30
3,07	0,32	12,50	4	18	012329	199,80

ALUMINUM DECK WITH STEEL CAPS - UC

- Non-slip surface and easy to stack
- Optimized ratio of weight and carrying through computerassisted profile optimization
- Steel caps therefore robust and durable
- Patented beam reinforcements in the walking area ensure minimal deflection and best possible slip resistance

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
0,73	0,61	6,80	6	18	006625	131,80
1,09	0,61	8,80	6	18	006627	154,60
1,40	0,61	11,90	6	18	006629	176,10
1,57	0,61	13,40	6	18	006631	175,00
2,07	0,61	14,50	6	18	006632	212,00
2,57	0,61	17,10	5	18	006633	250,40
3,07	0,61	20,30	4	18	006634	284,50



COMBI DECK WITH PLYWOOD PANEL

- With water-resistant, non-slip and lightweight plywood panel 12 mm, BFU-100 G-12
- Robust riveted head profiles and steel connection claws, hot dip galvanized

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
0,73	0,61	6,30	3	14	000479	112,60
1,09	0,61	8,40	3	14	003195	126,20
1,57	0,61	13,20	3	14	000481	150,20
2,07	0,61	17,00	3	14	000482	167,50
2,57	0,61	20,00	3	14	000483	191,10
3,07	0,61	23,00	3	14	000484	226,00

COMBI ACCESS DECK

ID

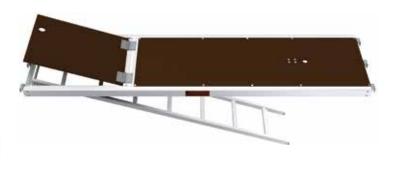
- With non-slip deck aluminum
- With integrated aluminum ladder (Length 2.07 m extendable)
- Access flap made of corrugated sheet metal with safety lock
- Easy release of the integrated access ladder, also from the soil surface possible
- Head profiles and optimized connection claws from steel, hot dip galvanized

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
2,07	0,61	23,30	4	14	009872	415,80
2,57	0,61	23,70	4	14	000486	368,70
3,07	0,61	26,70	3	14	000488	411,50

COMBI ACCESS DECK WITH ALUMINUM DECK OPEN TO SIDE

- With non-slip deck aluminum
- With integrated aluminum ladder
- Access flap made of currugated sheet metal, open to the side
- Easy release of the integrated access ladder, also from the soil surface possible
- Head profiles and optimized connection claws from steel, hot dip galvanized

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
2,57	0,61	24,20	4	14	006522	473,30
3,07	0,61	27,20	3	14	006523	522,90



COMBI ACCESS DECK WITH PLYWOOD DECK

ID

- With water-resistant, non-slip and lightweight plywood panel 12 mm, BFU-100 G-12
- With integrated aluminum ladder
- Robust riveted head profiles and steel connection claws, hot dip galvanized

Length (m)	Width (m)	Weight (kg)	Load class	PU (pcs.)	Article no.	Price (€)
2,57	0,61	24,00	3	14	000492	312,40
3,07	0,61	29,00	3	14	000494	356,30



COMBI ACCESS DECK WITHOUT LADDER

ID

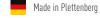
- With non-slip deck aluminum
- Without integrated ladder
- Access flap made of currugated sheet metal, open to the side
- Head profiles and optimized connection claws from steel, hot dip galvanized

Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
1,09	0,61	11,80	14	011480	244,70
1,57	0,61	11,00	14	009079	279,90
2,07	0,61	17,00	14	000490	295,70
2,57	0,61	20,00	14	002250	346,40
3,07	0,61	25,00	14	000489	394,00

ACCESS LADDER ALUMINUM

- Alumninum
- As a separate ladder for the inside scaffold climbing
- With riveted steel claws for safe attachment to the access decks

Length (m)	Width (m)	Weight (kg)	Article no.	Price (€)
2,16	0,40	3,00	001323	80,70


ACCESS LADDER STEEL

- Hot dip galvanized
- As a separate ladder for the inside scaffold climbing
- With hook for safe mounting to the access decks

Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,16	0,40	10,50	80	000172	79,90

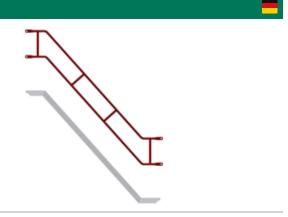
Net price, not discountable

ALUMINUM STAIRS WITH PLATFORM

- For bay height 2.00 m
- Scaffold stairway for the planned construction with facade scaffold
- For quick and safe mounting of the levels
- The steps are designed in a non-slip manner and allow comfortable outside access for extensive use of scaffold and when transporting material, without reducing the work surface in the main walkway
- Evenly distributed line load p=2.5 kN/m2
- $-\,$ Single load distributed on 0.2 x 0.2 m2 F=1.5 kN
- Meets the requirements according to DIN EN 12811-1

Field Length (m)	Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,57	3,25	0,64	23,00	10	000419	524,60
3,07	3,65	0,64	28,00	10	000420	639,60

Individual customer identification possible.


OPTIMA CLIMB UP

OUTSIDE STAIRCASE HANDRAIL

- For aluminum stairs with platform
- To hang in rail housings

Field (m)	Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2,57	3,25	14,90	40	007580	154,10
3,07	3,65	16,70	40	012509	165,90

INSIDE STAIRCASE HANDRAIL

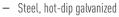
- Steel, hot dip galvanized
- For aluminum platform stairs
- Can be used for field wide 2.50 and 3.00 m
- For mounting to the stair string
- Integrated end plug on the handrail for protection

Length (m)	Weight (kg)	A/F	PU (pcs.)	Article no.	Price (€)
2,25	11,50	19	20	000425	137,80
2.25	11.50	77	20	006947	137.80

ROUND INSIDE GUARD RAIL

- Steel, hot dip galvanized
- For aluminum stairs with platform
- For mounting to the stair string

Weight (kg)	PU (pcs.)	Article no.	Price (€)
5,80	30	009226	69,60


ALUMINUM BEGINNING STAIR WITH PLATFORM

- Beginning stair with integrated base jack mounts
- Scaffold stairway for the planned construction with facade scaffolding
- For quick and safe mounting of the scaffold levels
- The steps are designed in a non-slip manner and allow comfortable outside access for extensive use of scaffold and when transporting bulky material, without reducing the work surface in the main walkway

Höhe (m)	Länge (m)	Breite (m)	Gewicht (kg)	VPE (Stk.)	ArtNr.	Preis (€)
0,50	0,91	0,64	9,94	10	012040	326,10
1,00	1,49	0,64	11,60	10	006521	340,70
1,50	1,75	0,64	18,60	15	009945	487,40

STAIRCASE HANDRAIL FOR PLATFORM STAIRS

- For aluminium beginning stairs with platform 1.00 m
- For easy mounting on overhanging threaded rod including connection with half-coupler

Weight (kg)	Article no.	Price (€)
11,50	014964	135,70

ACCESS LADDER 1.00 M

- Steel, hot dip galvanized
- System related suspension
- Enables easy entry into the scaffold, with a field height of 1.00 m

Length (m)	Width (m)	Weight (kg)	Article no.	Price (€)	
1,00	0,62/0,47	7,90	010407	93,80	

CORNER DECK

- Steel, hot dip galvanized
- As an addition to system decks in the inner corner area
- Non-slip deck

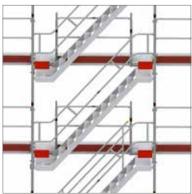
Model	Length (m)	Width (m)	Weight (kg)	Article no.	Price (€)
1-board	0,32	0,32	4,45	013862	89,20

GRIDDOOR

- Complete protection against unauthorised access to stairways
- Visible separation between construction site and surroundings
- Assembly and fixing thanks to sliding coupling connection points
- Mesh door for all scaffolding widths thanks to flexible coupling connections

Height (m)	Width (m)	Weight (kg)	Article no.	Price (€)
1,70	0,85	13,00	014603	179,00

OPTIMA **GAP COVERS**

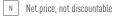

GAP COVER WITH HALF COUPLER

- Steel, hot dip galvanized
- Non-slip deck
- Varied use for bridging gaps up to 0.25 m wide
- Quick assembly due to half coupler

Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,35	0,38	4,00	50	007794	45,80
0,60	0,38	6,20	50	008256	71,60

POLYGON COVERAGE

- Steel, hot dip galvanized
- Non-slip deck with deck fastening for gap-free construction of round scaffolding from 0 to 45° $\,$
- System-related suspension


Model	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
2-board	0,61	8,50	50	007731	70,30
3-board	0,94	20,50	50	014230	226,40

GUARD RAIL

- Steel tube \emptyset 38 mm, hot dip galvanized
- Compressed and perforated at the ends
- Time-saving attachment via the self-locking swivel pins
- No tools required for installation

	Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
	0,73	1,40	100	011958	18,20
	1,09	2,00	100	011959	18,80
	1,29	2,40	100	011960	19,50
	1,40	2,60	100	011961	20,10
	1,54	2,80	100	011962	21,20
	1,57	2,90	100	011963	20,00
	2,07	3,80	100	011964	20,50
	2,57	4,70	100	011965	21,90
	3,07	5,50	100	011966	23,30
	4,14	12,30	100	013183	42,40
-					

OPTIMA

DOUBLE END GUARD RAIL

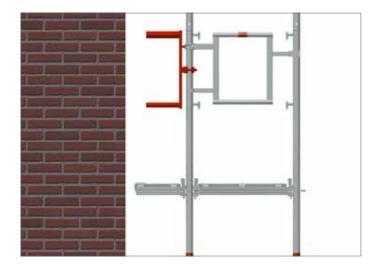
- Steel, hot dip galvanized
- As double side protection on the front sides

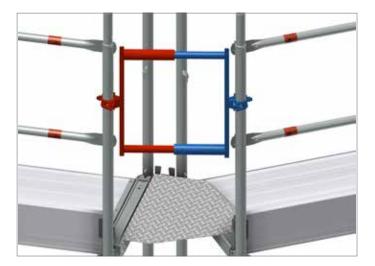
Width (m)	Weight (kg)	A/F	PU (pcs.)	Article no.	Price (€)
0,73	4,40	22	25	011991	49,80
1,09	5,30	22	25	011990	54,80

CORNER SWIVEL PIN

- Steel, hot dip galvanized
- For mounting the side protection in corner areas
- No tools required for installation

Weight (kg)	Article no.	Price (€)
0.30	011248	14.40




END GUARD RAIL 1-BOARD

- Steel tube, hot dip galvanized
- Double side protection on the front sides
- Can be plugged into each other
- Can be used as side protection for round scaffolds

Weight (kg)	PU (pcs.)	A/F	Article no.	Price (€)
2,60	100	19	009366	29,20

TOE BOARD

- Timber
- Galvanized steel fittings
- For attaching onto the toe board pins of the assembly frame as
- a part of the complete three-part side protection
- Length 1.29 m corresponds to the half 2.57 m field

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,73	1,50	80	000537	16,50
1,09	2,50	80	000538	18,30
1,29	2,80	80	010812	19,40
1,57	3,00	80	000539	20,10
2,07	4,00	80	000540	21,40
2,57	4,80	80	000541	23,10
3,07	6,50	80	000542	25,10

END TOE BOARD

- Impregnated timber
- With galvanized fittings
- For front side protection

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,73	1,50	200	000544	15,00
1,09	2,00	100	000545	17,20

ALUMINUM TOE BOARD

- Aluminum
- Galvanized steel fittings
- For mounting in the toe board pins of the frame as a component of the full, three-part side protection

Lenç	gth (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)	
(),73	1,50	80	010142	29,30	<u>(L)</u>
1	,09	2,00	80	010143	35,10	<u></u>
1	,57	2,80	40	010144	40,90	<u>(L)</u>
2	2,07	3,60	40	010145	51,00	(1)
2	2,57	4,40	40	010146	60,80	<u></u>
3	3,07	5,20	40	010147	70,80	<u></u>
	1,14	6,90	40	014000	81,00	<u></u>

ALUMINUM END TOE BOARD

- Aluminium
- Stahlbeschläge verzinkt
- Für den stirnseitigen Seitenschutz

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)	
0,73	1,44	100	008668	27,60	<u>L</u>
1.09	2.00	100	016029	32.40	_ (L)


OPTIMA **BRACKETS**

PROTECTIVE WALL BRACKET U-SUPPORT

- With perforated disc connection
- With tube connector
- For widening by two system lengths
- Field length 3.07 m with cross diagonal

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,73	8,60	50	012220	132,60

NETTING FOR ROOF GUARD SCAFFOLDS AND SIDE GUARDS

- As per DIN EN 1263-1 and DIN 4420
- The quick and easy way to a safe protective barrier

Colour	Length (m)	Width (m)	Weight (kg)	Article no.	Price (€)
green	10,00	2,00	5,00	000195	59,30

ROOF GUARD EXTENSION

- Steel tube Ø 48.3 mm, hot dip galvanized
- Use in connection with a frame bracket 0.73 m

Width (m)	Weight (kg)	Article no.	Price (€)
0,73	4,00	000518	40,20

DECK FASTENING

- Steel, hot dip galvanized
- Suitable for roof guard extension
- Suitable for frame bracket 0.73 m (Article no. 000589)

Model	Weight (kg)	Article no.	Price (€)
2-board	2,00	000590	52,90

Net price, not discountable

GAP-FREE SUSPENSION BRACKET 0,32 M

- Steel, hot dip galvanized
- No gap covers are required thanks to gap dimensions of less than 8,0 cm (EN 12811 for gap dimensions of less than 8,0 cm)
- Tool-free installation thanks to suspension with bayonet catch incl. integrated anti-lift device

Height (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,28	0,34	2,07	50	013000	40,60

BRACKET LEDGER U-SUPPORT

- Steel, hot dip galvanized
- Without tube connector
- With one wedge head connection
- With integrated lift-off protection
- To extend scaffold with serial UNI-CONNECT decks

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,22	1,40	-	011691	26,90
0,32	1,80	100	012124	33,00

BRACKET U-SUPPORT WITH TUBE CONNECTOR

- Steel, hot dip galvanized
- With tube connector
- With one wedge head connection
- To extend scaffold with serial UNI-CONNECT decks

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,39	3,90	100	002223	42,10
0,73	6,30	20	002224	52,00

BRACKET U-SUPPORT

- Steel, hot dip galvanized
- Without tube connector
- With one wedge head connection
- To extend scaffold with serial UNI-CONNECT decks

Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,73	6,50	20	007309	48,40

EN

STANDARD COUPLER

- Robust model
- For right-angled connection of tubes of Ø 48.3 mm
- Class BB, EN 74-1
- To be used in the classes B and BB of the steel and aluminum tube

Thread	A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
Standard	22	1,15	25	000325	8,60
Standard	19	1,15	25	000326	8,60
Quick	22	1,15	25	007521	9,30
Quick	19	1,15	25	007523	9,30

SWIVEL COUPLER

- Steel, hot dip galvanized, drop-forged
- Robust model
- For any angular connection of tubes of \emptyset 48.3 mm
- Class B, EN 74-1
- To be used in the class B of the steel and aluminum tube

Thread	A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
Standard	22	1,35	25	000328	9,30
Standard	19	1,35	25	000329	9,30
Quick	22	1,35	25	007522	9,90
Quick	19	1,35	25	007524	9,90

SPARE PARTS CAN BE FOUND IN OUR PRICE LIST "ACCESSORIES".

SCAFFOLD TUBE STEEL

EN

- S235 Steel, hot dip galvanized
- Measurements as per EN 39
- Manufacturing length 6.00 m
- Minimum yield strength 235 N/mm2
- Connection of standard couplers allowed
- Special lengths on request

Model (mm)	Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
48,3 x 3,2	1,00	3,77	61	004548	17,20
48,3 x 3,2	2,00	7,54	61	004550	31,40
48,3 x 3,2	3,00	11,31	61	004552	45,60
48,3 x 3,2	4,00	15,08	61	004554	61,80
48,3 x 3,2	5,00	18,85	61	005619	76,00
48,3 x 3,2	6,00	22,60	61	004087	85,00

SWIVEL PIN CONNECTION

- Steel, hot dip galvanized
- With wedge head connection
- With swivel pin connection

Weight (kg)	Article no.	Price (€)
0,70	013419	20,00

WEDGE HEAD COUPLER FIXED

EN

- Steel, hot dip galvanized, drop-forged
- With screw cap
- For connection of scaffold tubes to the perforated disc

A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
22	1,29	25	005859	25,70
19	1.29	25	005858	25.70

WEDGE HEAD COUPLER FIXED PARALELL

- Steel, hot dip galvanized, drop-forged
- For connection of scaffold tubes to the perforated disc

A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
19	1,27	25	009947	24,20
22	1,27	25	009948	24,20

SVIWEL WEDGE HEAD COUPLER

- Steel, hot dip galvanized, drop-forged
- With screw cap
- For connection of scaffold tubes to the perforated disc

A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
22	1,20	25	005861	28,90
19	1,20	25	005860	28,90

OPTIMA COUPLERS

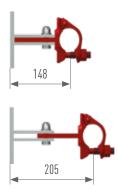
WEDGE HEAD COUPLER DOUBLE

- Steel, hot dip galvanized

Width (m)	Weight (kg)	Article no.	Price (€)
0,15	1,20	011125	25,70

BASIC COUPLER

- T-carrier plate with two parallel welded half couplers
- To bear vertical loads of scaffold constructions
- To be mounted directly on the facade
- Holes in the T-carrier plate for the use of M12 screws
- Basic structural analysis available
- Extensive lattice beam constructions are no longer necessary



BASIC COUPLER ADJUSTABLE

- T-carrier plate with two parallel welded half couplers
- To bear vertical loads of scaffold constructions
- To be mounted directly on the facade
- Holes in the T-carrier plate for the use of M12 screws
- Basic structural analysis available
- Extensive lattice beam constructions are no longer necessary
- Adjustable for wall distances from 148 205 mm
- With four fixing holes

A/F	Weight (kg)	Article no.	Price (€)
22	5,00	009137	70,40

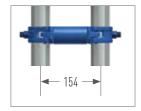
SWIVEL PIN COUPLER

- Steel, hot dip galvanized, drop-forged
- Half coupler with welded swivel pin for attaching additional back guard rails,
 e. g. on the inside of the scaffold

Thread	A/F	Weight (kg)	Article no.	Price (€)
Normal	22	0,80	000134	9,90
Normal	19	0,80	002354	9,90
Quick	22	0,81	007436	10,40
Quick	19	0,81	008202	10,40

PERFORATED DISC CLAMPABLE

 Ensures the possibility of mounting at the desired position along a standards or tubes Ø 48.3 mm

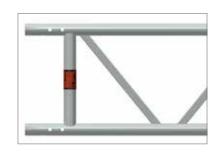


A/F	Weight (kg)	PU (pcs.)	Article no.	Price (€)
22	1,00	25	002229	36,70
19	1.00	25	004587	36.70

DISTANCE COUPLER

- Steel tube Ø 48.3 mm
- With two welded couplers, galvanized
- E. g. as connection between facade scaffold and a forward-placed stair ascent

Width (m)	A/F	Weight (kg)	Article no.	Price (€)
0,110	22	1,60	008225	26,00
0,154	19	1,80	008297	26,30
0,180	22	2.00	000233	27,10


OPTIMA LATTICE BEAMS

LATTICE BEAM STEEL

- $-\,\,$ Steel tube Ø 48.3 mm, hot dip galvanized
- Load depends on span according to the separate load table

Length (m)	Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
3,20	0,40	30,00	25	000108	198,50
4,20	0,40	39,00	25	000109	245,80
5,20	0,40	50,00	25	000110	297,80
6,20	0,40	58,00	25	000111	335,40
7,60	0,40	72,00	25	000112	496,30

LATTICE BEAM ALUMINUM

- Aluminum tube Ø 48.3 mm
- Load depends on span according to the separate load table

Length (m)	Height (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
3,20	0,40	12,00	25	000255	234,00
4,20	0,40	15,00	25	000257	291,00
5,20	0,40	20,00	25	000258	348,00
6,20	0,40	23,00	25	000259	390,10
8,10	0,40	31,00	25	000261	550,00

TUBE CONNECTOR FOR LATTICE BEAMS

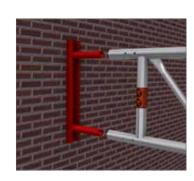
- Steel, hot dip galvanized
- For the continuous extentions of lattice beams

Model	Weight (kg)	Article no.	Price (€)
Straight	1,30	003588	30,50

BOLT WITH CUTTER PIN

- Screw-free connection of lattice beams
- $-\,\,$ Replaces usual screws M 12 x 60 mm there by reducing the assembly time
- Consisting of cotter pin (article no. 002232), bolt (article no. 002235) and washer (article no. 002964)
- All articles are also available separately

Weight (kg)	Article no.	Price (€)
0,09	002237	3,70



WALL CONNECTION FOR LATTICE BEAM

- Steel, hot dip galvanized
- For fastening to the wall, e. g. for bridging constructions
- For lattice beams with 400 mm construction height

Gewicht (kg)	ArtNr.	Preis (€)
3,50	000170	78,00

LATTICE BEAM BASE PLATE

- Steel, hot dip galvanized
- Movable
- Use in connection with a decking transom, for further extensions of scaffold pattern when bridging with lattice beams

Weight (kg)	Article no.	Price (€)
6,00	000235	93,60

TUBE CONNECTOR WITH HALF COUPLER

- Steel, hot dip galvanized
- Screw fitting for lattice beams. tube or ledger

Length (m)	Weight (kg)	A/F	Article no.	Price (€)
0,30	1,80	22	000223	27,60
0,30	1,80	19	000222	27,60

WALL TIE

- Steel tube ∅ 48.3 mm. hot dip galvanized
- Installation as short scaffold tie with one standard coupler
- Installation as long scaffold tie with two standard couplers

Length (m)	Weight (kg)	Article no.	Price (€)
0,30	1,40	000240	13,00
0,40	1,80	000242	14,40
0,50	2,00	000125	15,10
0,60	2,60	000241	16,40
0,80	3,20	000129	18,40
1,00	3,80	000127	20,40
1,30	4,80	000131	21,40
1,50	5,50	000132	24,70
1,80	6,70	000133	29,60

EYE BOLT Ø 12 MM

- Galvanzied and welded
- For use with plastic expansion plugs 70/100 mm and plastic caps natural / black

Length (m)	Thread Lenght (mm)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
90	54	0,155	150	000358	1,50
120	65	0,175	150	000359	1,70
160	58	0,210	100	000360	1,90
190	65	0,235	100	000363	2,10
230	65	0,265	100	000361	2,20
300	65	0,300	50	002374	2,50
350	65	0,364	50	000362	2,70
400	65	0,424	50	006333	6,00
450	65	0,468	50	007555	6,20
500	65	0,530	50	002983	7,50

PLASTIC CAP

- For closing anchor drill holes

Colour	Weight (kg)	PU (pcs.)	Article no.	Price (€)
natural	0,003	100	000651	0,20
black	0,003	100	010353	0,20

EXPANSION PLUG

- For eye bolts with a timber thread Ø 12 mm
- For drilling Ø 14 mm

Length (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,07	0,007	100	000357	0,40
0,10	0,007	100	011158	0,40

MJ-SCAFFY

- Screw-in aid for eye bolts
- With socket A/F 22 (for standard ratchet wrenches)
- With 3/4 inch square socket
- With SDS drill adapter

BG Grant BG BAU

(Delivery time on request

PROTECTION WALL PROFILE ALUMINUM

- Aluminum profile
- For setting up a robust wall system for partitions between the construction site and the surrounding area
- Any plank, commercially available ISO panels or other panels up to 5.5 cm thick can be used

Length (m)	Weight (kg)	Article no.	Price (€)
2,00	12,9	011647	168,60

HOLDER FOR PROTECTION WALL PROFILE

- Steel, hot dip galvanized
- With half coupling
- Movable couplers connection points for every scaffold situation

Weight (kg)	Load class	Article no.	Price (€)
1,90	22	011662	32,30

SPECIAL SCAFFOLDING TAPE

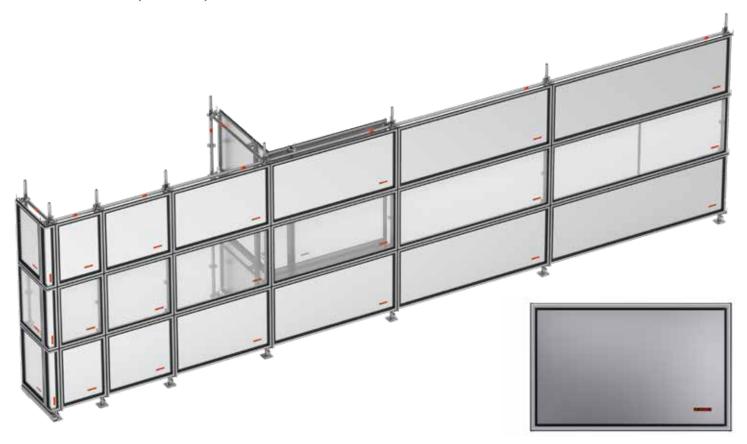
- Self-adhesive special tape
- BASt certified
- For metallic and polyotine substrates
- Retroreflective sheeting according to RSA for inner-city use traffic space in the area of sidewalks and bike paths
- Red / white blocks
- On rolls of 50 m each
- Width optimized for protection wall profile aluminum

100 2,40 012570 116,00	Width (mm)	Weight (kg)	Article no.	Price (€)
	100	2,40	012570	116,00

WARNING AND PROTECTION BEACON

- For securing scaffolding on walkways and cycle paths
- Aluminum profile for vertical and horizontal use, with two rotatable couplers on
- With retroreflective, BASt-certified foil according to RSA for inner-city traffic areas in the area of walways and cycle paths

Length (m)	Width (mm)	Weight (kg)	Article no.	Price (€)
1,50	0.15	5.50	013903	109.50



The system free safety enclosure OPTI-BOARD is the answer to many questions that you may ask yourself when planning your construction site with regard to environmental and noise protection. When renovating or building, the construction site enclosure protects employees and passers by from noise, dust and dirt.

- Light cassette: The transparent version of the OPTI-BOARD enables work in daylight conditions.
- Dust-tight: A circumferential rubber seal makes the OPTI-BOARD almost dust-tight. This enables a clean construction site cladding, the use of vacuum systems (asbestos removal) and weather-independent sandblasting.
- Quick and easy assembly
- Can be use in the UNI, UNI-CONNECT, UNI TOP, COMBI and OPTIMA systems
- Can be installed vertically and horizontally

WALLCASS	SETTE SHEE	Т			
Width	Height	Weight (kg)	PU (St.)	Article-no.	Price (€)
0,50	1,00	5,50	14	012064	172,50
0,73	1,00	6,85	14	012076	164,20
1,00	1,00	8,70	14	012065	198,50
1,09	1,00	9,20	14	012077	188,80
1,57	1,00	12,30	14	012078	218,80
2,07	1,00	15,50	14	012079	258,80
2,57	1,00	18,70	14	012080	278,80
3,07	1,00	22,50	14	012081	337,10

WALLCASS	SETTE LIGHT				
Width	Height	Weight (kg)	PU (St.)	Article-no.	Price (€)
0,50	1,00	4,30	14	012070	189,70
0,73	1,00	5,30	14	012082	180,70
1,00	1,00	6,45	14	012071	224,80
1,09	1,00	6,80	14	012083	213,90
1,57	1,00	8,90	14	012084	295,60
2,07	1,00	11,00	14	012085	345,70
2,57	1,00	13,20	14	012086	406,10
3,07	1,00	15,75	14	012087	446,10

INSIDE CORNER FOR WALLCASSETTE

Width	Height	Weight (kg)
0,40	1,00	6,85
PU (St.)	Article-no.	Price (€)
20	012088	206.10

Weight (kg)

PU (St.)

Article-no.

Price (€)

OUTSIDE CORNER FOR WALLCASSETTE

Width	Height	Weight (kg)
0,17	1,00	3,99
PU (St.)	Article-no.	Price (€)
50	012089	172.80

CASSETTE HOLDER

System

STACKING PALLET FOR TUBES

- Steel tube, hot dip galvanized
- Specially suited for module scaffolds, e. g. standards, ledgers, guard rails, diagonal braces, tubes and toe boards
- Open all round
- Suited for stacked and crane transports
- The tubular supports are removable and are to be stowed securely in the base frame so that empty pallets can be transported and stacked in a very space-saving manner
- Special orders on request
- Push-on tube with bevel on one side, also available separately (Article no. 005791)

Length (m)	Width (m)	Weight (kg)	PU (pcs.)	Article no.	Price (€)
0,85	0,85	30,50	5	006962	232,20
1,25	0,55	31,80	5	010334	231,90
1,25	0,85	35,00	5	005614	240,20

OTHER PRODUCTS
FOR STORAGE AND TRANSPORT
FIND IN OUR PRICE LIST,
'ACCESSORIES'

KASK INDUSTRIAL CLIMBING HELMET SUPERPLASMA AQ

- Tested and approved according to EN 397
- With chin strap
- Adjusting wheels allow one quick and easy adjustment to the right size
- With ring for attaching the helmet to a belt

Color	Article no.	Price (€)
dark blue	010496	74,60
white	010497	74,60
yellow	010498	74,60
orange	010499	74,60
red	010500	74,60
green	010501	74,60
dark green	010502	74,60
light blue	010503	74,60
black	010453	74,60

KASK INDUSTRIAL CLIMBING HELMET ZENITH

- Tested and approved according to EN 397 and EN 50365
- Various settings allow a quick and easy adjust
- With ring for attaching the helmet to a belt

Color	Article no.	Price (€)
blue	010504	84,70
white	010505	84,70
yellow	010506	84,70
orange	010507	84,70
red	010508	84,70
green	010509	84,70
black	010510	84,70

OTHER PROTECTIVE EQUIPMENT FIND IN OUR PRICELIST 'ACCESSORIES'

ш											
Ш											
ш											
1000		A CONTRACTOR OF THE STATE OF TH									

OPTIMA

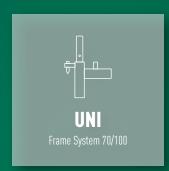
OPTIMA ORDER FORM

SIMPLY FILL OUT THE FORM AND SEND TO

Fax: +49 2391 8105 375 or E-mail: info@mj-geruest.de

Company		Phone Fax										
Street												
Postal code, city, country												
Name of buyer		E-mail										
□ ORDER □ INQUIRY												
Order/Quotation please send □ by post □ by fax □ by e-mail												
PRODUCT DESCRIPTION	ARTICLE NO.	O. QUANTITY UNIT PRICE € TOTAL VALUE €										
				ORDER VALUE €								
All prices exclude VAT applicable at the time of shipment. All dimensions an of shipment. Sale is subject exclusively to our sales terms and delivery cor accounts are recieved. Our prices are ex work.	d weights are non-binding appro ditions. In brief: place of busine	ximate values. T	Technical data is subject ion is Plettenberg. Exten	to change without prior notice. Price ded reservation of property rights ur	es are charged as applicable on the day ntil full payment of all our outstanding							
Date of delivery	Shipping method											
Delivery address:	Freight costs											
	Terms of delivery											
	Terms of payment			Stamp/Signature								
	MJ-Consultant			Date								

WWW.MJ-SCAFFOLDING.COM f in



MJ-Gerüst GmbH | Ziegelstraße 68 | 58840 Plettenberg Germany | info@mj-geruest.de